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We present high-resolution direct numerical simulations of turbulent three-dimensional Rayleigh-Bénard
convection with a focus on the Lagrangian properties of the flow. The volume is a Cartesian slab with an aspect
ratio of four bounded by free-slip planes at the top and bottom and with periodic side walls. The turbulence is
inhomogeneous with respect to the vertical direction. This manifests in different lateral and vertical two-
particle dispersion and in a dependence of the dispersion on the initial tracer position for short and intermediate
times. Similar to homogeneous isotropic turbulence, the dispersion properties depend in addition to the initial
pair separation and yield a short-range Richardson-like scaling regime of two-particle dispersion for initial
separations close to the Kolmogorov dissipation length. The Richardson constant is about half the value of
homogeneous isotropic turbulence. The multiparticle statistics is very close to the homogeneous isotropic case.
Clusters of four Lagrangian tracers show a clear trend to form flat, almost coplanar, objects in the long-time
limit and deviate from the Gaussian prediction. Significant efforts have been taken to resolve the statistics of
the acceleration components up to order four correctly. We find that the vertical acceleration is less intermittent
than the lateral one. The joint statistics of the vertical acceleration with the local convective and conductive
heat flux suggests that rising and falling thermal plumes are not associated with the largest acceleration
magnitudes. It turns out also that the Nusselt number which is calculated in the Lagrangian frame converges

slowly in time to the standard Eulerian one.
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I. INTRODUCTION

Turbulent convection is one of the best studied fundamen-
tal flows in fluid-dynamics research [1,2]. One reason is the
large range of examples and applications in nature and tech-
nology for which a turbulent motion is initiated and sus-
tained by heating a fluid from below and cooling from above.
Almost all of these studies have been conducted in the Eu-
lerian frame of reference. They were primarily focused to the
mechanisms of local [3-6] and global [7-10] turbulent heat
transfer.

The Lagrangian perspective of turbulence, in which the
fields are monitored along the trajectories of infinitesimal
fluid parcels, has recently produced new insights into the
local topology of fluid parcel tracks, the local strength of
accelerations, and the statistics of time increments of turbu-
lent fields [11,12]. The progress is caused on the one hand by
significant innovations in the experimental techniques, such
as three-dimensional particle tracking [13-15] or acoustic
methods [16]. On the other hand, direct numerical simula-
tions of turbulence become now feasible that resolve three-
dimensional Lagrangian turbulence at moderate and higher
Reynolds numbers [17-20]. Both, experiments and simula-
tions, made a deeper understanding of the small-scale inter-
mittency and its connection with large accelerations of fluid
parcels possible.

Lagrangian investigations in convective turbulence are
however rare. Several reasons can be given for this circum-
stance. First, on the experimental side it is desirable to moni-
tor the temperature along the particle tracks beside the ve-
locity components and the accelerations. Only recently,
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Gasteuil et al. [21] constructed therefore a smart particle that
monitors velocity, temperature, and orientation while moving
through the cell. Due to the integrated power supply the par-
ticle diameter remained however larger than the thermal
boundary layer thickness, such that the large-scale bulk mo-
tion can be monitored only. Second, it is also clear that the
complexity of direct numerical simulations increases since
the temperature field has to be advected in addition to the
velocity. Temperature tracking along the tracer positions re-
quires additional interpolations. Furthermore, one cannot re-
turn to simulations in a fully periodic cube, the so-called
homogeneous Rayleigh-Bénard convection setup, since the
periodicity in the direction of the mean temperature gradient
causes a self-amplifying fluid motion. This was discussed in
detail by Calzavarini et al. [22,23]. Third, the turbulence is
inhomogeneous—at least in the vertical direction as in the
following setup—and it is thus not clear which of findings
from the homogeneous isotropic purely hydrodynamic turbu-
lence pertain. For example, the height dependence of the
statistics has to be considered additionally.

First numerical attempts have been made recently to study
some aspects of the heat transfer and tracer dispersion in the
Lagrangian framework of convective turbulence [24]. The
motivation of the study can be condensed in one question:
Which new insight into the nature of turbulent convection
provides the complementary Lagrangian view? One result of
[24] was to determine a mixing zone which is dominated by
rising and falling thermal plumes. This is done by combining
acceleration and local convective heat flux statistics. The
mixing zone starts right above the thermal boundary layer
and extends several tens of the boundary layer thickness into
the bulk of the cell. Thermal plumes are fragments of the
thermal boundary layer that detach in the vicinity of the top
and bottom isothermal planes. The existence of a mixing
zone has been suggested in several Eulerian studies on the
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basis of other criteria, e.g., [25,26] and was thus confirmed in
the complementary Lagrangian frame of Ref. [24].

The present work extends the previous study [24] into
several directions. Besides the local convective, the local
conductive heat flux is studied along the tracer tracks. It
requires to monitor temperature gradient components. Fur-
thermore, the analysis of the Lagrangian tracer dispersion is
extended. In addition to the hydrodynamic case [20], we
study the dependence of pair dispersion on the initial sepa-
ration and the initial seeding position. As discussed in Refs.
[19,27,28] for the pure hydrodynamic case, higher-order par-
ticle statistics requires to track little clusters of tracers. We
provide here an analysis of the four-particle statistics, where
the tracers start out of groups of tetrahedra of different side-
lengths and initial vertical positions.

The outline of the manuscript is as follows. In Sec. II the
equations of motion, the numerical scheme, the Lagrangian
tracer tracking, and the turbulent heat transfer are discussed.
In Sec. III, some results of the Eulerian statistics of the tem-
perature field are presented. This section is followed by sec-
tions on the Lagrangian particle dispersion, the acceleration
statistics, and the conductive and convective heat flux. We
conclude with a short discussion of our results and will give
a brief outlook to possible extensions of the present work.

II. NUMERICAL MODEL

A. Equations of motion and boundary conditions

The Boussinesq equations, i.e., the Navier-Stokes equa-
tions for an incompressible flow with an additional buoyancy
term ag e, and the advection-diffusion equation for the tem-
perature field, are solved by a standard pseudospectral
method for the three-dimensional case [29]. The equations
are given by

V-u=0, (1)
du )
E+(u‘V)u=—Vp+vV u+ agbe,, (2)

a0 AT
—+W-V)0=kV*0+u—. (3)
at H

Here, u is the turbulent velocity field, p is the (kinematic)
pressure field, and 6 is the temperature fluctuation field. The
system parameters are: gravity acceleration g, kinematic vis-
cosity v, thermal diffusivity «, vertical temperature gradient
AT/H, and thermal-expansion coefficient . The temperature
field is decomposed into a linear profile and fluctuations 6
about the profile

T(x,t)=— A—HT(Z —H/2)+ 0(x,1). (4)

Since T is prescribed and constant at bottom and top bound-
aries z=0 and z=H, the condition #=0 follows there. Here,
AT>0. The dimensionless control parameters are the Prandtl
number Pr, the Rayleigh number Ra, and the aspect ratio I,

Pr=

X I=

. (5)
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Ra= 28220 (6)
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= (7)

The simulation domain is V=L XLXH=[0,'7]X[0,['7]
X [0, r]. In lateral directions x and y, periodic boundary con-
ditions are taken. In the vertical direction z, free-slip bound-
ary conditions are used which are given by

u,=0=0 and Ju,=du,=0. (8)

The computational grid has a size of N, XN, XN,=2048
X 2048 X 513 points. For an aspect ratio I'=4, it is thus equi-
distant in all three space directions with a grid spacing Ax.
Time stepping is done by a second-order predictor-corrector
scheme. The production runs are conducted on one rack of
the Blue Gene/P system which corresponds with 4096 MPI
tasks [29]. We use volumetric fast Fourier transforms based
on the p3dfft package by Pekurovsky [30]. The spectral
resolution is Ky, 7x=4.5, where ky=24127N,/(3L,). Quan-
tity 7x=1"4/(€)!"* is the Kolmogorov scale with the mean
energy dissipation rate (e).

B. Lagrangian particle tracking

Lagrangian tracer particles follow the streamlines of the
turbulent velocity field in correspondence with

x=u(x(1),1). 9)

For the majority of the analysis, we seeded 3 X 10° tetrahedra
aligned along the outer coordinate axes in the box, i.e., x;
=X, X,=Xxg+{e,, x3=xy+{e,, and x,=x,+ e, . The vector x
is randomly chosen in the box. The tracer ensemble was
divided into six groups with initial sidelengths of £=1, 2, 4,
8, 16, and 32 grid spacings Ax, which correspond with 0.5, 1,
2,4, 8, and 16 7. The two-particle dispersion analysis is
consequently conducted for the three tracer pairs {x;,x,},
{x;,x3}, and {x,x,} of each tetrahedron.

For the two-particle and multiparticle statistics, we run in
addition a simulation with the following initial conditions:
again x;=x,, x,=xo+{e,, x3=x,+{e,, and x,=x,+{e,. The
x and y coordinates of vector x are again randomly chosen.
The vertical coordinate corresponds with zo=;/2, &7, 105y,
206y, and H/2. Here, we pick €=1x/2 and 2 7.

The Lagrangian particles are advanced in time simulta-
neously with the Boussinesq equations. The velocity, tem-
perature, and temperature gradient components at intergrid
positions are calculated by trilinear interpolation. The full
particle set is written out each 0.45 7,. Here, 7,= Vu/{e) is
the Kolmogorov time. Accelerations along the Lagrangian
tracks are calculated from three successive integration steps
(Ar=0.0067,) and the output interval is the same as for the
particle positions, velocities, temperature, and temperature
gradient. We thus gather Lagrangian statistics over up to
4.8 X 10® tracer particle events. Figure 1 illustrates the initial
phase of the tracer dispersion. All tracers start from a x-y
plane close to the bottom wall.
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FIG. 1. (Color online) Side view of two instantaneous Lagrang-
ian tracer distributions at r=9.57, (top) and t=197, (bottom). The
tracers are colored with respect to the local temperature T at their
position. Four intervals are taken: Te[AT/2,AT/3], T
e[AT/3,AT/6], Te[AT/6,0], and T €[0,—AT/6]. The whole en-
semble consists of 2 X 10° tracers. Tracers started in the whole x-y
plane at the height of the thermal boundary layer thickness which is
indicated by the solid line very close to the bottom plane in both
plots.

C. Turbulent heat transfer

The convective turbulence is studied for one parameter
setting. The Rayleigh number is Ra=1.2x 108, the Prandtl
number Pr=0.7, and the aspect ratio I'=4. The response of
the system is a turbulent heat transport as quantified by the
dimensionless (Eulerian) Nusselt number which is given for
a plane at fixed height z by

_ <uzT>A,t - KO"Z<T>A,t
kAT/H

Nu(z) , (10)

where (-), , denote averages in planes at z and with respect to

time. The value of Nu(z) is constant and independent of z.
The global Nusselt number is then defined as

1 (" H
Nu= I . Nu(z)dz=1+ E(uZT}W, (11)

where (-)y, is a combined volume and time average. The
Nusselt number for the present free-slip boundary case fol-
lows to Nu=56.36*=0.59. Similar to Julien et al. [31], we
find an enhanced turbulent heat transport in comparison to
no-slip top and bottom plates. For Rayleigh numbers be-
tween 9.8X10° and 1.2X10%, we fit the power law Nu
=0.166 X Ra%316 to the data.

III. EULERIAN TEMPERATURE STATISTICS

Figure 2 displays the mean temperature profile as a func-
tion of height. The total temperature can take values between
—AT/2 and AT/2 only. As typical for higher Rayleigh num-
bers, the jump of mean profile to zero is observed across a
thin layer, the thermal boundary layer. The inset magnifies
the vicinity of the bottom plate. The thickness of the thermal
boundary layer is defined as
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FIG. 2. (Color online) Mean temperature profile (7(z)) , of the
turbulent convection run at Ra=1.2X10% and Pr=0.7. The inset
shows the resolution of the thermal boundary layer with seven grid
planes. It also indicates the geometric interpretation of the thermal
boundary layer thickness &7 (see the text). The lower right box in
the main figure indicates the size of the magnification.

H

=ﬁ' (12)

or
For z=0, the conductive part of Eq. (10) contributes to Nu
only and we can set Nu=—«d(T)4 ,|.o/ («kAT/H). This leads
to 8;=—AT/(29T)4,|.-0) and to the geometric derivation of
the thermal boundary layer thickness (as indicated in the in-
set of Fig. 2). In contrast to the no-slip case, we have
(), =(uy)s =Cu)s,=0. Consequently, no velocity bound-
ary layer is present. The Taylor microscale Reynolds number
Ry=\5/(31{e))(u?) =~ 143.

Figure 3 shows an instantaneous snapshot of the total
temperature field 7(x,7). Contour plots in two sideplanes and
close to the top and bottom planes are shown. We observe a
typical feature of thermal convection—the ridgelike maxima
which correspond with thermal plumes that detach randomly.
They form a skeleton which is advected by the flow close to
the boundaries. The plumes coincide with local maxima of

FIG. 3. (Color online) Contour plot of the instantaneous tem-
perature field T(x,z,).
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FIG. 4. (Color online) Contour plot of the instantaneous thermal
dissipation rate field y(x,7,). Data correspond to those in Fig. 3. In
order to highlight the small-amplitude dissipation filaments in the
bulk, we plot contours of the decadic logarithm of y.

the thermal dissipation rate field (see Fig. 4 and compare it
with Fig. 3), which is defined as

Xe,0) = [ VT (x,0)]. (13)

The definition contains the temperature fluctuations which
are given by

T'(x,0) = T(x,1) = (T(2))a,s- (14)

The probability density function (PDF) of 7’ is shown in Fig.
5. We compare the PDF of data taken from the whole slab
volume with the Gaussian statistics in the top figure. Similar
to findings for turbulent convection in closed cylindrical ves-
sels with solid walls the temperature field statistics deviates
from Gaussian [6]. The analysis can be refined. The inset of
the top panel shows therefore vertical profiles of the plane-
and time-averaged flatness, F=(T"%), ,/(T"?); ,. The flatness
differs clearly from the Gaussian value of 3 in all parts of the
convection cell. In addition we plot the profile of the plane-
and time-averaged skewness S :(T’3>A,,/<T’2>i/’ % in the same
inset. The magnitude of the skewness peaks at about 55,
which is well inside the plume mixing zone [24]. Both pro-
files agree also qualitatively with those by Kerr [7] and by
Ref. [6], which have been conducted with no-slip top and
bottom boundaries. In the bottom panel of Fig. 5 we show
the PDF of the temperature fluctuations in four different
planes (see the legend). The PDF in the midplane comes
closest to a Gaussian profile. Our data suggest that the free-
slip boundary conditions lead to smaller deviations from
Gaussianity compared to the no-slip case. It should also be
noted that for strong rotation of the cell about the vertical
coordinate the temperature fluctuations are Gaussian for both
no-slip and free-slip boundary conditions, as reported by
Julien et al. [31].
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FIG. 5. (Color online) Statistics of the temperature fluctuations
w=T"/T,,,. Top: Probability density function (PDF) of the tem-
perature fluctuations. Data are compared with a Gaussian distribu-
tion (dashed line). Inset: Skewness and flatness of the temperature
fluctuations w as a function of the vertical coordinate z/H. The
profiles are obtained by averaging over lateral planes and a se-
quence of statistically independent snapshots. The Gaussian value
for the flatness F=3 is indicated by the dashed line. Bottom: PDFs
of the temperature fluctuations taken in different planes which are
indicated in the legend and by vertical solid lines in the inset of the
top figure.

IV. LAGRANGIAN PARTICLE DISPERSION
A. Two-particle dispersion

The Eulerian framework analysis of turbulent convection
demonstrated already that the flow is indeed inhomogeneous
with respect to the vertical direction. Furthermore, we recall
that the Lagrangian tracer motion is constrained between z
=0 and H since both walls cannot be penetrated. One moti-
vation to study the dispersion in three-dimensional turbulent
convection is therefore to verify if the classical Richardson
dispersion law [32] can be also observed for the present case.
Recall that the Richardson dispersion law follows from a
solution of a diffusion problem which assumes a homoge-
neous and isotropic turbulent state. It states that, given two-
particle tracks, x,(r) and x;(z) with x;=(x;,y;,z,), the distance
vector R(t)=x,(r)—x,(z) will follow

(R¥(0).= g7, (15)

where g3, is a universal constant of O(1). The symbol (-);
denotes an average over Lagrangian particle tracks. We de-
compose the relative tracer motion into a lateral and vertical
contribution in order to separate homogeneous and inhomo-
geneous directions. The distance vector can be written as
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FIG. 6. (Color online) Vertical and lateral particle pair disper-
sion as a function of the initial pair separation. (a) Compensated
lateral dispersion for different initial separations as indicated in the
legend. The dashed lines correspond with Eq. (18) for Ry=nx/2
and Ry= 7k and with the Eq. (19) for Ry=8 7, and Ry=167. (b)
Compensated vertical dispersion. Again, Egs. (18) and (19) are fit-
ted to the data for the same initial separations. (c) Same data as in
(b) without compensation by {e)t’. The vertical dispersion is con-
strained between the planes and levels thus off at larger times. The
square of the cell height, H?, and the Kolmogorov time scale, 7,
are indicated. All axes are given in decadic logarithm. Tracer pairs
are seeded initially across the whole volume.

R()=R,(1) + R.(t)e.. (16)

The lateral two-particle dispersion is given by (Riy(t)
—Rfy(O))L, where the average is taken over 6 X 10° particle
pairs. Here,

R, =[x,(1) = x(1)Je + [y2(r) = y1(t)]e,. (17)

Similarly, the vertical dispersion is given by (Rf(t)—Rf(O))L.
The dispersion in each space direction would contribute with
a weight of 1/3 in homogeneous isotropic turbulence. In or-
der to compare our pair dispersion results with the predic-
tions for isotropic turbulence, we will introduce two weight
factors, ny=2/3 for the lateral motion and C,=1/3 for the
vertical one.

Figure 6 displays both dispersion processes with respect
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to time for six different initial pair separations as explained
in Sec. II C. The two-particle dispersion is given by a com-
pensated plot in panels (a) and (b) of the figure. The graphs
are normalized by (€)#® to capture a Richardson-like scaling
as a plateau. The initial ballistic behavior at small separations
causes then an algebraic decay with ¢!, Following Sawford
et al. [20], we fit the following two relations to our data at
small times

(R,() - R2(0)), @(Rm(()))z lt,z a8)

(e -3 Nk
if R, (0)< 7 and

(Ry() = R2(0)), 11C, C(Rm(O)
(er 3 Mk

if 7x<R,,(0)<L. Here L is the outer scale of turbulence and
C=2 [20]. Index m stands for the lateral terms, xy, or the
vertical term, z. The agreement with Eq. (18) for the initial
Kolmogorov and sub-Kolmogorov separations is reasonable.
For larger initial separations we use Eq. (19). The larger the
initial separation the better the agreement of prediction and
data. We fitted the two smallest and largest initial separations
only. None of the initial separations is neither much smaller
nor much larger than the Kolmogorov scale, which explains
the slight deviations of the numerical results from laws (18)
and (19).

As discussed for example in Refs. [20,33], the establish-
ment of a Richardson-like regime depends sensitively on the
initial separation between the tracers. Indeed, for one of the
six different separations the lateral dispersion curve passes
through a small plateau with a Richardson constant g,,
~(.25. This is observed for an initial separation of R,(0)
=27 [see solid line in Fig. 6(a)]. The re-translation of the
proportionality constant g,, into a three-dimensional homo-
geneous isotropic turbulence case is obtained by

2/3

~ 8y 3
8xy= E‘— = ngy ~ (0.375. (20)

Xy

The proportionality constant is smaller than the value gs,
~(.5-0.6 for homogeneous isotropic turbulence [18-20]. In
Ref. [24], it was already shown that the PDF of the lateral
particle pair distance can be fitted to the stretched exponen-
tial form of Richardson [32], however not to the Gaussian
shape as suggested by Batchelor [34].

Figures 6(b) and 6(c) display the vertical dispersion. In
panel (b), we repeat the compensated plot of panel (a) and
show the fits to Eq. (18). A plateau is observed now for
initial separations between 17 and 2 7. The resulting con-
stant is g.~0.05 [see solid line in Fig. 6(b)]. If one combines
the lateral and vertical dispersion, the Richardson constant
for the turbulent convection follows to

gy +8,~023, (21)

which is less than our earlier estimate of g,,~0.375 and
234~0.5-0.6. A smaller Richardson constant corresponds
with a stronger correlated pair motion. Such behavior can be
attributed to the presence of rising and falling thermal
plumes—a feature that is absent in isotropic turbulence. Ad-
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FIG. 7. (Color online) Vertical and lateral particle pair disper-
sions as functions of the initial vertical seeding position z,. (a)
Compensated lateral dispersion for different initial heights z, as
indicated in the legend (holds for all four figures). The initial tracer
separation is Ry= /2. (b) Compensated vertical dispersion. The
initial separation is also Ry=7g/2. (c) Compensated lateral disper-
sion. The initial separation is now Ry=27g. (d) Compensated ver-
tical dispersion. Again Ry=27. All axes are given in decadic loga-
rithm and the Kolmogorov time scale is indicated by a dashed line.
The solid line follows ~#~! in all plots.

ditionally, it is known that the plumes can cluster and form a
large-scale circulation [2]. Figure 6(c) demonstrates that the
vertical dispersion is constrained by the top and bottom
planes. The vertical contribution (Rf(t)—R?(O))L to the pair
dispersion levels off. Eventually the lateral dispersion con-
tributes solely to the long-time behavior.

The specifics of the present inhomogeneous flow is that
not only the initial pair separation, but also the initial seeding
position is important. This brings us to the second series of
particle dispersion studies where tracer pairs with fixed dis-
tance in different horizontal planes of the slab are seeded
(see Sec. I1 C for details) and shorter simulations for about
half the duration are rerun. Figure 7 summarizes our find-
ings. We picked five initial seeding heights: two in the
boundary layer and two in the plume mixing zone [24] and
the center plane. While panels (a) and (b) are for Ry=7x/2,
panels (c) and (d) are for Ry=2 7. The latter is the separa-
tion that yielded a short Richardson-like range in Fig. 6(a).

Figures 7(a) and 7(c) show that the lateral dispersion
curves of the tracer subgroups differ in magnitude. The local
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slope is however nearly the same for all subsets. The situa-
tion is slightly different for the vertical dispersion: while the
seeding in the center plane causes a gradual variation in the
local slope of the dispersion curve [see Figs. 7(b) and 7(d)],
the seeding in the thermal boundary layer leads to significant
differences after the initial ballistic period. The same result is
observed in Fig. 7(d). The reason is that the tracer pairs
probe then the detachment of the boundary layer fragments
to full extent. This is not the case when starting in the bulk of
the cell. It can also be observed that a plateau (which would
imply Richardson-like scaling) depends sensitively on the
initial separation and seeding height.

To summarize this part, Richardson-like dispersion ap-
pears for a very small range of scales in the present flow.
Similar to previous studies, we confirm that the initial pair
dispersion depends sensitively on both the initial pair sepa-
ration and the initial vertical position of a tracer pair in the
volume. The qualitative behavior of the tracer dispersion in
the convection flow is very similar to that in homogeneous
isotropic turbulence, given the same range of Reynolds num-
bers. The specifics of the turbulence, such as the particular
driving mechanism or a present inhomogeneity, manifests
however in the proportionality constant gs,; and causes even-
tually quantitative deviations from homogeneous isotropic
turbulence. Figure 7(c) illustrates this fact very nicely. The
scatter of the plateaus can be interpreted as a measure of the
sensitivity.

B. Multiparticle statistics

The Lagrangian statistics of higher-order moments re-
quires to follow more than two Lagrangian tracers simulta-
neously. In the following, we will focus to the four-particle
case. The tracers are initially seeded at the edges of tetrahe-
dra as discussed in Sec. II C. The distortion of such a small
particle cluster by the turbulence has been studied for the
pure hydrodynamic case in Refs. [19,27,28,35]. The original
motivation for such analysis was to get a deeper geometrical
insight into the formation of frontlike structures in scalar
turbulence: in the vicinity of steep scalar gradients small par-
ticle clusters become co-planar. Furthermore, since the clus-
ter evolution probes the whole range of scales of turbulence,
one hopes to disentangle systematically correlated large-
scale advection from decorrelated small-scale motion. The
presence of thermal plumes in convection will alter the de-
formation of the cluster at small times. It is however open,
what will be observed in the long-time limit.

The particle tracks x,(z), x,(¢), x5(f), and x4(¢) can be
transformed into the center-of-mass coordinate

4
1
r(t) = 7 2 x:(0), (22)
430
and the three relative coordinates (which are of interest here)

p(1) = ~=ls(1) — 3,0,
\2

po(1) = Vl—%[zxm x5 () =0,
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FIG. 8. (Color online) Time evolution of the eigenvalues /; [see
Eq. (25) for their definition] of one particular four-particle cluster.

ps(1) = %[wr) (O -x0-x0] (23)

The radius of gyration follows in this frame to R,
_ [, 2. 2 . . .
=\/pi+p;5+p5. The shape evolution of the particle cluster is
monitored by the following moment-of-inertia tensor:

3
=2 pipl, (24)
i=1

where a,b=x,y,z is the component index of the vector p;
and i=1,2,3. The real eigenvalues g; =g, =g3=0 quantify
the shape of the particle cluster. Isotropic objects correspond
with g,=g,=g3, cigar-shaped clusters with g,>g,~ g3 and
pancake-shaped clusters with g;~g,>g5. Figure 8 shows
the time evolution of the three eigenvalues for one specific
four-particle cloud. The eigenvalues are normalized and
given by

8k

3
> 8m

Thus 0=/, =1. One can observe that the eigenvalue varia-
tions become smoother with increasing time. A convergence
of the cluster to an almost coplanar object is observable for
larger times, as quantified by the small value of 3. It will
turn out now that this example displays a typical long-time
behavior.

In Fig. 9, we show the time evolution of the Lagrangian
ensemble average of the normalized eigenvalues. Data for
different initial sidelengths of the tetrahedra are compared.
The tetrahedra are seeded across the whole volume. Similar
to the two-point measure, the initial deformation of the clus-
ters depends sensitively on the sidelength of the tetrahedron.
The smaller the initial sidelength the stronger the initial
stretching of the cluster to a cigar-shaped object (for
=< 157,). After about 877, all curves collapse and the mean
values remain almost unchanged. Our data yield (I,); =0.84,
(I,);.=0.15, and (I5);=0.01. Surprisingly, the obtained mean
values are very close to the findings of Biferale et al. [19]
and HacKl ef al. [36] for homogeneous isotropic turbulence.
In Ref. [19], tetrahedra were excluded that had two points
too close or too far of each other such that their values are

I, = for k=1,2,3. (25)
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FIG. 9. (Color online) Time evolution of the normalized eigen-
values of the moment-of-inertia tensor. The average is taken over
the whole ensemble of tetrahedra. For times t>10(=877,) the data
converge to values (I3); —0.84, (I,); —0.15, and (I;); —0.01. The
tetrahedra are seeded in the whole volume initially.

not directly comparable with the present ones. Recent three-
dimensional particle tracking experiments by Liithi et al.
[37] report an (I,); which is also close to 0.16.

Since the large scales are probed in the long term limit by
the particle clusters, this agreement suggests that convective
and isotropic turbulences on this scale do not differ signifi-
cantly. The relative motion within a cluster is insensitive to
whether the tracer particles are swept by large vortex struc-
tures or by large-scale circulation. Consequently, our find-
ings suggest that the constrained vertical motion (and thus
the inhomogeneity) is not important in the diffusive long-
time limit of the cluster dynamics.

One can expect that for times > 1027',7, the tracers ad-
vance independently of each other. The present long-time
means are compared with the result of a joint Gaussian
distribution of the relative coordinates, p(p;,p,,pP3)
~exp[—(p?+p3+p3)]. This ansatz results to (,)=0.75,
(I,)6=0.22, and (I3);=0.03 for the three-dimensional case
which is obtained by Monte Carlo simulations [28]. The re-
ported mean of (I,);=0.15 is smaller than the Gaussian
value.

Figure 10 reports the dependence of the shape evolution
from the initial position z,. The effects remain small, but
systematic. The closer the starting position of the tetrahedron
to the boundary plane, the faster it converges into the final
quasistatic state. Again the stretching and deformation is
most efficient when the particle cluster passes through the
mixing zone right above the thermal boundary layer.

Figure 11 displays the PDFs of [, for five instants ¢
> 877, The plots highlight two aspects. First, there is still a
big variety in the amplitudes of individual 7 although their
means remain almost unchanged. Second, a very slow drift
in the tails is present which is indicated by the arrows in
Figs. 8(a) and 8(c).

V. ACCELERATION STATISTICS

The top panel of Fig. 12 shows the PDFs of the three
acceleration components. Each component is given in units
of the corresponding root-mean-square value. As expected,
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FIG. 10. (Color online) Time evolution of the normalized eigen-
values of the moment-of-inertia tensor. The average is taken again
over the whole ensemble of 5X 10* tetrahedra for each case. Four
tracer particles form initially a tetrahedron with a sidelength of
nx/2. Three ensembles started in planes with &, 1087, and H/2 as
given in the legend.

the distributions of the two lateral components coincide.
Table I provides the quantitative details of the acceleration
statistics and lists for example the skewness S(ay)
=(a})/(a})** and the flatness F(ay)={a})/{a})* with k=x,y
or z. The numbers for the lateral components are almost

PDF

PDF

0.5 0.6

()|

PDF

0 005 01 015 02 0.25 03 035 04

FIG. 11. (Color online) Probability density functions of the nor-
malized eigenvalues I, of the moment-of-inertia tensor (a) 1, (b) /5,
and (c) 1. The time instants at which the data have been analyzed
are for t>877, as given in the legend in (a). The vertical dashed
lines mark the long-time averages (I;);. The arrows in the upper and
lower panel indicate that there is still a slight drift in the tails al-
though the means in Fig. 9 remain nearly unchanged. The tetrahedra
are seeded again in the whole volume initially.
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FIG. 12. (Color online) Probability density function (PDF) of
acceleration components @, with k=x,y and z. Upper panel: PDF
plots. Each component is normalized by its corresponding root-
mean-square value. Lower panel: Statistical convergence test for the
fourth moment of the acceleration. The total number of events
which as been included for the analysis are 4.4 X 108,

identical. The vertical acceleration component has a smaller
flatness which is in line with a sparser tail of the correspond-
ing PDF. The bottom panel of the same figure provides the
statistical convergence test of the fourth-order moments
where the product w¥p(w) is plotted vs w with w=a;/a; s
It reflects the fundamental difficulty to gather reliable statis-
tics for higher-order moments in Lagrangian turbulence. Re-
call that this analysis is conducted over a set of 4.4X 103
events. The area which is occupied by the scatter of the
graphs in the tails of the PDFs determines the error bar of the
fourth-order moment (and consequently of the flatness). We
checked that the second and third-order moments display
almost no scatter (not shown). The issue of statistical con-
vergence has been discussed for turbulence measurements in
a swirling flow [38,39] and in numerical simulations of ho-
mogeneous isotropic turbulence [40]. Our values for the flat-
ness F(ay) of the lateral flatness are of the same magnitude as
those reported in [38].

Figure 13 refines the statistical analysis of the acceleration
components. Due to the vertical inhomogeneity, we report

TABLE I. Root-mean-square values, total maximum/minimum
amplitudes, skewness S(ay)=(a;)/{a;)*?, and flatness F(ay)
=<a2)/ (a%}z of the acceleration components. The error bars of F(ay)
have been obtained by measuring the area of the scatter in the lower
panel of Fig. 12. Maxima and minima are given in units of the
gravity acceleration g.

Iy max(ay) min(ay)
V{ap) TA Tk S(ay) F(ay)
N 1.17 1001 =574 -0.093 63.4(*16)
y 1.16 559 —540 -0.156 64.4(+16)
a, 1.10 518 -680 -0.119 30.3(x11)
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FIG. 13. (Color online) Joint probability density function of
acceleration components a; and the height z. Left: component a,.
Right: component a,. The contours are displayed units of the dec-
adic logarithm. The normalization of the acceleration component in
both panels is as in Fig. 12.

the height dependence of the acceleration statistics for one
lateral and the vertical component, respectively, and plot
contours of the joint PDF p(qa;,z). The largest lateral accel-
erations and the fattest tails are found close to the top and
bottom planes. It will turn out in Sec. VI that the vorticity is
concentrated in cyclones and anticyclones close to the ther-
mal boundary layer which can rationalize the large lateral
accelerations. The support of the PDF decreases monotoni-
cally to the center plane. We will get back to this point later
in the text when discussing the role of the vertical vorticity
component in connection with plume detachments. In con-
trast to the result for the lateral accelerations, the support of
the joint PDF p(a,,z) shows no significant variation with
height. It shrinks to zero in the boundary planes (since is
u.=0) and grows rapidly up to about the thermal boundary
layer thickness. The slight asymmetry of the inner contour
lines (for the largest probability density levels) corresponds
with the rising plumes which detach from the bottom plane
at z=0 and have a,>0 and with falling plumes at z=H for
which a,<0. Note also that the support of all PDFs is the
same in the center of the cell. This is consistent with the idea
that the turbulence is close to isotropic far away from the
isothermal walls.

The important result of this section is that there is differ-
ently strong intermittency for the vertical and lateral accel-
erations in thermal convection. It is caused by the higher
level of intermittency in and close to the thermal boundary
layer. As a consequence, we will have to take a closer look at
the mechanisms of local heat transfer in the vicinity of the
top and bottom planes. This is done in Sec. VI.

VI. LAGRANGIAN CONVECTIVE AND CONDUCTIVE
HEAT FLUX

A. Lagrangian heat flux

The local heat flux contributions can be probed in the
Lagrangian frame of reference. We adopt therefore definition
(10) and calculate the local Lagrangian conductive and con-
vective flux contributions. They are given by

PHYSICAL REVIEW E 79, 056301 (2009)
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FIG. 14. (Color online) Time traces of the convective (top) and
conductive (bottom) heat transfer along two of the 1.2 X 10° tracers.
The Eulerian value of Nu is indicated as a dotted line in the top
panel.

Nu(x) = Nugon, () + Nuggpg(x) = —ZT[uz(x)T(x) - k0. T(x)],
K
(26)

along the Lagrangian tracks x(7). Figure 14 shows typical
time traces of Nug,,, and Nu., along two tracers. They
display a big variability with respect to time. Even negative
values are possible for both contributions. As expected, the
convective term has a significantly larger magnitude than the
conductive one. The latter is dominant in the thermal bound-
ary layers where the thermal dissipation rate y has the largest
magnitude. Figure 15 displays the PDFs of the convective
and conductive contributions gathered along the tracks of the
whole tracer ensemble. In addition, we display the results for
the products u,T and u,T. All quantities are shown in units of
their root-mean-square values. While the PDFs for u, T and
u,I are symmetric, those of u T and «d,T are strongly
skewed. This reflects the vertical net transfer of heat through
the volume. The Lagrangian average Nu; =(Nu(x)); , results
to

H
NuL =1+ E—KMZT)LJ' (27)

We have directly verified from the corresponding PDF in
Fig. 15(c) that the mean of the Lagrangian conductive heat
transfer is with 1.04 very close to one. Furthermore, it is
found that Nu; <Nu. This is in contrast to the experimental
findings for the smart particle probe of Gasteuil er al. [21],
where Nu <Nu;. The reason for this difference might be due
to the finite extension of the smart particle that exceeded the
thickness of the thermal boundary layer. We have compared
the result for the full record (F) with that of a smaller subset
(S), which is one third of set (F) and the results differed by
6.5% only (see also Fig. 15). A time-resolved analysis shows
that Nu, (1) =(Nu(x,7)); relaxes slowly to the Eulerian value
of Nu. The tracers which have been seeded randomly or at
particular heights at the beginning have to pass a kind of
“thermalization” process.
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FIG. 15. (Color online) Probability density functions (PDF) of
the conductive and conductive heat flux contributions along the
Lagrangian tracer tracks. (a) Lateral convective contributions u,T
and u,T. (b) Vertical convective contribution u.T. (c) Conductive
contribution —d7/dz. All quantities are normalized by their root-
mean-square values. The analysis is conducted over two different
data sets: the full record (F) and a third of it (S).

Our result sheds interesting light on the joint velocity-
temperature sampling properties of the Lagrangian tracers.
First, it is known that for the present geometry a large-scale
circulations are present [41,42]. Tracers will preferentially
follow the circulation motion in the convection layer. The
large-scale circulation can carry a fraction of the total heat
transport only, as has been analyzed recently with a proper
orthogonal decomposition [43]. Second, we observe high-
amplitude events of the vertical vorticity w,=du,—d,u, close
to the maxima of the thermal dissipation rate y. This is
shown in Figs. 16 and 17 where contour plots of slice snap-
shots of x and w, at a height z= 0 are compared. The local
maxima in dissipation rate plot (16) reproduce the skeleton
of plume sheets. In their vicinity, we observe cyclones and
anticyclones that are generated in connection with the de-
tachment of plume fragments. This observation is in line
with results in [5] for the nonrotating and with [31] for the
rotating case. Exactly these cyclones and anticyclones cause
the large lateral positive and negative accelerations as seen in
the PDFs in Fig. 12. Figure 18 plots vertical profiles of
means of both quantities. While the root-mean square of the

PHYSICAL REVIEW E 79, 056301 (2009)

FIG. 16. (Color online) Contour plot of the decadic logarithm of
the thermal dissipation rate log,o[ x(x,y,z=6r,%)]. The logarithmic
contour spacing is chosen in order to highlight the small-amplitude
events.

vertical vorticity component varies weakly, the thermal dis-
sipation rate is strongly peaked in and close to the boundary
layer. It is also known from studies in homogeneous isotro-
pic turbulence [11] that the Lagrangian tracers are not very
frequently trapped in the core of such vortex structures.

B. Joint statistics of Lagrangian heat flux
and acceleration

The thermal plumes detach permanently from the thermal
boundary layer and can be identified as regions in which the
product u 7" >0 [21,24]. Here we extend this analysis and
study the correlations between the vertical velocity compo-
nent and the (total) temperature in relation to the accelera-
tion. Figure 19 displays the joint statistics of the vertical and
lateral accelerations and the products of velocity and tem-
perature, u,7. In order to highlight the statistical correlation
between the two variables of the joint PDF we divide the
joint PDF by the two single quantity PDFs,

FIG. 17. (Color online) Contour plot of the vertical vorticity
component w_(x,y,z=0dr,1). Data correspond to those in Fig. 13.
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FIG. 18. (Color online) Vertical profiles of the averaged thermal
dissipation rate (x(z))4, (solid line) and the root-mean square of
vertical vorticity component G(wz(z)>A’t (dashed line). The latter is
divided by a factor of 10.

p(ai’uzT)
pla)p(u.T)

The top panel of Fig. 19 shows the joint statistics for a,
and u,T. A pronounced maximum at larger accelerations and
values of u,T is found. They can be related to coherent struc-
tures, such as vorticity tubes in the bulk of the slab or the
cyclones/anticyclones in the boundary layer. The correlation
between vertical acceleration and the product u,7T" is weaker.
The local amplitudes of the joint PDF are found at the outer
boundaries of the support, at moderate acceleration ampli-
tudes and larger values of u,T. In Ref. [24], we reported the
same behavior for p(a,,u.T’) and identified rising plumes
(a,>0,u,T' >0) and falling plumes (a,<0,u. T’ >0). Recir-
culations around rising and falling plumes have to form due
to the incompressibility of the fluid. They were related to

(a,u.T) = (28)

.,

X~ X,rms

a/a

-5 0 5 10 15

Z z;ms

-5 0 5 10 15

FIG. 19. (Color online) Joint probability density function of
lateral acceleration (upper panel) and vertical acceleration (lower
panel) and heat flux contributions. Upper panel: w=u_T/(1.T) s
Lower panel: w=u,T/(u,T)s The contour spacing is in decadic
logarithm.
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FIG. 20. (Color online) Joint probability density function of the
vertical acceleration component a,/a, s and w=-3.T/(3,T) .
Top panel: Tracer positions in the bulk have been considered only.
Bottom panel: Tracer positions in the whole volume are included.
The contour spacing is in decadic logarithm.

maxima in the half plane u,7" <0. These are only some of
the possible scenarios which can be assigned to strong cor-
relations in the joint statistics. The firm conclusion which we
can draw from the present analysis and the one in [24] is that
plumes (and therefore the vertical convective flux events) are
not connected with the largest vertical accelerations. The de-
tachment of plumes is a more gradual process.

We repeated the joint statistical analysis for the conduc-
tive part, —«d.7(x). Results are summarized in Fig. 20. The
contour plots display now

pla,,—d.T)
a.,—0.7T) = —————.
e dd) = D)

We keep in mind from Egs. (10) and (26) that upward con-
ductive heat transport events have a negative sign, i.e.,
d,T|. While the lower panel of Fig. 20 includes the La-
grangian data of the whole volume, the upper panel of the
same figure excludes events in the thermal boundary layer up
to the beginning of the plume mixing zones. This zone was
identified and studied in [24] and starts for the present pa-
rameter setting at a height H/16. The extended tail in the
lower panel can thus be related to largest gradients (and thus
largest thermal dissipation rate amplitudes) in and above the
thermal boundary layer. The asymmetry to negative a, for
the largest gradients can be interpreted as tracer decelerations
which are present when temperature gradients are formed.
Negative accelerations (or decelerations) seem to be fre-
quently related to stagnation-point flow topologies, those
flows which can make the temperature field steep to large
gradients.

(29)

VII. SUMMARY AND DISCUSSION

The focus of the present work was on Lagrangian aspects
of turbulent convection. The results can be summarized as
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follows. The study of pair and multiparticle dispersion yields
qualitatively similar results compared to the homogeneous
isotropic case. Although the scaling behavior of second-order
moments is sensitive to initial separations and seeding
heights, initial separations close to the Kolmogorov length
result in a short Richardson-like scaling range. Interestingly,
we reproduce the same long-time limits for the particle clus-
ter shapes as in isotropic turbulence despite turbulent con-
vection is inhomogeneous. This limit deviates from the
Gaussian value. Our results suggest that the dispersion laws
can be obtained for more complex flows than isotropic ho-
mogeneous turbulence. The proportionality constants are
however different, which can be attributed to qualitatively
different turbulence structures such as thermal plumes in
convection. They affect the vertical dispersion more signifi-
cantly than the lateral dispersion.

The inhomogeneity of the convective turbulence mani-
fests in less intermittent statistics of the vertical acceleration
component compared to the lateral ones. Thermal plumes are
not coupled with the strongest accelerations.

We find that the Lagrangian Nusselt number converges
slowly to the Eulerian value. A closer inspection of this point
could be done in several steps: first, to disentangle the large-
scale circulation from the turbulent background, as done in
[43], and to combine such a study with a Lagrangian analy-
sis. Second, the present study indicates also that the Nusselt

PHYSICAL REVIEW E 79, 056301 (2009)

number relaxes faster with a growing number of tracers, in
other words the sampling of joint velocity-temperature sta-
tistics improves. Our observation is also related to recent
experimental and numerical studies at very large Rayleigh
numbers [9,44] in which the existence and growth of a so-
called superconducting core is discussed, which is in line
with a decreasing importance of the large flow circulation for
growing Rayleigh numbers. A decreasing importance of a
coherent large-scale circulation might lead again to a faster
convergence Nu; —Nu. More studies of the Lagrangian
frame of high-Rayleigh number turbulence are thus neces-
sary.
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